Posted on

Inventions, Creative Thinking, and Problem Solving

by Kathleen Julicher
Of the many ways that distinguish people from animals, creativity and the ability to invent is most obvious.  God, when He breathed life into Adam, also gave him intelligence and the desire to create.  While creativity is given in some measure to all people, some like artists, inventors, or authors may have a special gift.  In our homeschools, all of our children will show a spark of creativity.  Nurture that spark in your children by using some of the ideas and resources mentioned in this article.
Creativity is the ability to create something new, or to change something to improve it.  We usually think of creativity as having to do mainly with art, but there is a technical kind of creativity which produces inventions and allows the scientist to solve problems and to design experiments.  Technical creativity and artistic creativity use a similar style of thinking, creativity, but in different ways.  In this way, inventions, artistry, and compositions are all products of creativity.  In science, creativity is expressed by invention, problem solving skills, design of experiments, and thinking of explanations of events.  Since an artist and a scientist use creative thinking in different ways, a good problem solver may not be able to paint, just as an artist may not be able to design experiments.  An excellent mathematical problem solver may not be able to arrange a room or design a bridge.  Technical problem solving and creativity are both part of inventing.
Inventors
There have been many famous inventors in the past whom you can study in your homeschool.  Among them are Edison, Marconi, Da Vinci, Curie, Kettering, Whitney, Carver, Tesla, Land, Babbage, Bell, and the Wright brothers.  What can we study about these inventors?  What similar characteristics did they have?  Curiosity must have been one.  Other similar traits might be: the desire to try something new, the persistence to overcome obstacles; an idea or concept, or maybe a dream; a willingness to take the time to work on a project.  Most inventors have an ability to think “outside the box”.  “The box” refers to common knowledge, or the usual way of doing something.  Discuss the things inventors have in common with your children.  Does your student have any of those characteristics?  Have you told him so?  How would you encourage those characteristics?  Below is a list of activities you can do at home to encourage or to train your young inventors.
Practicing Inventing

  • Let the child use tools (saw, drill, sewing machine, soldering iron, etc.) (safely, of course)
  • Let them have scraps to work on.
  • Compliment them on their projects.
  • Be surprised and pleased when they change something. Even if it is not the way you would have done it.
  • Let them make something without the instructions.
  • Let them make mistakes.
  • Teach them to learn from mistakes without being critical.
  • Let them change the instructions.

There are thousands of other inventors about whom little has written.  For example, we do not know who invented the stirrup, the metal plow, the needle, the iron, weaving, or the written word, so we cannot study the inventors, only the inventions.  In cases such as these, your student can draw the invention, decide how it would affect the way work was done and try to imagine how life must have been without the invention.  For example, stirrups were a terribly important invention and literally transformed Asia and parts of Europe.  In the fifth century, the hordes of Mongolia had stirrups while the peoples they conquered did not.  How must it have been to ride without them for your feet?  How did a soldier swing a saber or throw a javelin accurately and with power while on his horse without stirrups?  By studying the befores and afters of inventions, students can learn about changing and adapting things.
Conflict with traditional thinking
The problem with creative thinking is that it involves a change in the way we do things, or look at things.  A conservative person will have a certain set of recipes to be used on certain days and will resist learning any new recipe and a new or different technique.  This person will ask “When the way we cook dinner is perfectly fine, why change it?”  And so it is with schooling,  If the way we school is working, then why change that?  The natural instinct of most people is to leave well enough alone.  Homeschoolers, by nature are in conflict with traditional schooling, but we can still exhibit conservative, non-creative thinking.  This is exemplified by those who refuse to leave the textbook to do some project or field trip.  Those who wish to teach inventing or creativity, though, must leave the text behind and move at least part of the time into divergent thinking  There are three steps to the teaching of creativity: 
  1. allowing time to think up ideas
  2. allowing the children’s ideas to be different
  3. allowing them to put the ideas into action.   
By doing these things to practice creativity, you encourage it.  You must also model creativity if you expect your children to be inventive.
Practicing creative thinking and invention is easy.  First, set aside some time, perhaps two hours per week, for an activity.  Next, check out some of the activities suggested or some of the books from the resource list for ideas.  If you are doing a craft or an art problem then collect the materials to use.  In this way, your young inventors will have the necessary materials (plus a few unnecessary ones) to do their projects.
The most important thing is that the atmosphere must be conducive to creative thinking.  Do not interrupt brainstorming as this will stop the flow of thinking.  While brainstorming, do not be judgmental or point out the obvious flaws in their ideas.  To do so will inhibit the free flow of thought.  You may expect a product to be made; that is, a physical invention or creation.  It is reasonable to provide a deadline for the work, too, as this will help the children stay focused on the problem at hand.  You should control your own desire to help solve the problem as that is an inhibitor of the children’s creativity.  This may be difficult to do if the problem is especially interesting.  Your own work on the problem must be as collaborator not as an actor.  You should give your student an opportunity to explain the workings of the product.  Smiling is very important for parents, too.
Measuring Creativity
Paul Torrance developed a test which attempts to measure four components of creative ability: fluency, flexibility, originality, and elaboration, all related to the ability to think creatively.  Fluency is the ability to think of many ideas on one topic, whereas flexibility is the ability to use given figures in original ways while elaboration is tested by asking the student to put many details on a picture.  There are other tests which try to measure creativity and each approaches the goal differently.  At home, you can encourage fluency, flexibility, and elaboration by practicing the same skills.  For example, give your child a drawing of a box.  Ask him or her to draw something with lots of details using the box.  He might turn the box into a house, an office, a railroad car, an airplane, a dinosaur, or a hologram of a planet.  The many details of the drawing show elaboration.  Give your student a set of pages with boxes and within each box draw an “x”.  Ask him to draw something different in each box, using the “x” in the drawing.  The idea is to have him draw many different pictures.  Another time you might want him to think of unusual things to draw, uncommon things, out of the lines.  This would be an exercise in originality.  List making is another way to practice creative skills.  Ask your child to make a list of all of the blue things in the room.  He will probably start out with a list of blue colored things, but later, he may start adding things like a sad face, or blues music tapes, the number “3” which seems to be colored blue in his mind’s eye.  The longer the list the better.
In science, we normally think of inventions and problem solving when we think of creativity.  That is another great way to practice creative thinking.  An example of problem solving would be to attempt to answer the question: how could you make a structure made of popsicle sticks stable, so it would not move when pushed? Can you design a car which is drivable by a person without using legs?  Or, what could you use to provide light for reading if your electricity went out?  Invention really is very much like problem solving and you can use problem solving activities to train your children to think inventively.
Creative problem solving ideas:

  • Use these materials: five paper clips, tape, scissors, and a fifteen inch piece of string, and one or two of the following: paper plate, socks, shoelaces, pencils, feathers, hot glue gun and a nail.  
  • Give your students a list of possible projects, like the following:
    • Design a toy for a cat
    • Make a chair for a doll
    • Make a noise maker
    • Design a game
    • Make a tool which will keep a person cool
  • Give your students a time limit and watch what happens!

You never know when creativity and problem solving may be needed.  Years ago, when homeschooling at the beach, we heard yells for help.  A man was being electrocuted and could not release the pipe because his muscles were in spasm.  After explaining to the children that we needed something which did not carry electricity in order to break the circuit in which the man was trapped, everyone fanned out, looking, and quickly returned with items they had found.  One brought a rope, another a board, another a plastic jug, and so on.  The rope did the trick and the electrical connection was broken.  Later, after the ambulance took the man to the hospital, we went over what had happened, reinforcing the ideas of problem solving, creativity, calmness, and electrical safety.
Creative thinking is important to our lives, it comes from God, and should be encouraged in our homeschools.  We can do this by giving them time to create things, by encouraging them, and by being non-judgemental about their ideas.  Plan a weekly time for problem solving and creativity play and your children will grow in their ability to be creative and flexible.
Resources:  
The Art of Problem Solving: Volumes 1 and 2 by Sandor Lehoczky and Richard Rusczky  These two books are a systematic study of problem solving techniques in arithmetic and higher maths.  The authors go beyond mere techniques and teach mathematical reasoning and because of this, the student who works in these books will gain a much deeper feel for mathematics.  They are especially useful in contesting.  Solution sets, too.
Creative Thinking and Problem Solving for Young Learners by Karen S. Meador.  This book is for the youngest of school children, K-4, and the author says that the activities can be used for even younger children.  Starting out with a definition of creativity, the author lays a foundation for the teacher who wants to learn to think creatively, too, and not just use activity sheets according to directions.  The lessons detail different aspects of creative thinking and list ideas designed to teach them.  Literature resources are even used although this is primarily a thinking book.  An excellent resource for homeschool.
Inventions, Inventors and You by Dianne Draze.  A very practical book for busy parents who want to do inventions and inventors in homeschool, but just can’t bring it all together (or don’t have the time).  There are pages to copy and use which provide short lessons in creative thinking and invention.  The book includes fourteen lessons with directions for the teacher, ideas for warming up that creative thinking, reproducible worksheets, many individual projects, and patent activities, plus the answers.  Use this book to build a year of invention.  Grades 3-7. 
The Inventive Mind in Science: Creative Thinking Activities by Christine Ebert and Edward S. Ebert II.  After discussing creativity and creative thought, the authors go straight into activities you can use at home to encourage creative thinking.  The problem of the conceptual block is important for anyone working on developing his creativity, and the authors systematically cover methods to avoid blocks.  The book offers three types of inventing to be used in the classroom: discovery, Rube Goldberg, and practical.  Taking inventions across the disciplines, an invention festival, and patent studies are included in this useful book.  One important part of the book is the Invent! card game used for desktop inventing.
Minds On Science by Hilarie Davis and Anne Dudley.  The appropriate subtitle for this series of books is: Lessons to Link Science and Thinking Skills.  Scientific problem solving and techniques to do it are the subjects of this book.  A plan for solving problems is included, as are lists of possible topics for investigation.  Activities are included in which the students are asked to observe, record, measure, and even make line charts!  The books reviewed are for grades 1-3.  Use this set of books for a great way to integrate thinking and science.  Recommended  A volume each for grades 1-3.
Problems in Search of Creative Solutions by H. Allen Murphey  A wonderful book for your technically creative kids!  This is the book to get for ideas for building projects to be used in contests, team work, or just plain individual fun.  Problems like: “design and construct a device that will shoot projectiles of newspaper into a bushel basket.  This device will hurl, toss, or otherwise propel a projectile from behind a boundary line toward the target.”  The problems are similar to those used for Odessey of the Mind and are great for scout meetings. Other, shorter problems are listed if you only have an afternoon.  Have fun with this one!
Imagination Celebration Creativity Exercises by Judy Leimback and Joan Vydra.  Having trouble getting started teaching creative thinking?  Use this book to get going.  Easy to use reproducible pages with lessons on basic creativity exercises.  Listing things which are soft and white and all the “ships” you can think of (like friendship).  The authors ask questions like “what does gentle look like?” and “what does green sound like?”  Students are asked to rewrite definitions from the dictionary into their own words.  Other specific tasks are set for students which teach four skills: fluency, flexibility, originality, and elaboration.

Posted on

Tips for Planning Your Year in Science

  1. Choose two or three topics you would like to investigate.  You can use broad topics or activities you have always wanted to try.  You can let your child choose the topics.  You can let the test book choose for you.  Two or three is enough as you will want the freedom to let your child go further into a topic if it interests him or her.   If you have more than one child, it is easier if you study the same topic together, only on different levels.
  2. Choose the text or reference material you would like to use.  You may decide on a textbook.   Two points to remember about a textbook are:  early science texts are more readers than science references and later texts can get very boring if you use them as the sole guide for the class.  Choose a book for its information, its readability (by you not your student), and its pictures.  The younger children will learn a lot of science if it is read to them and if they can see the pictures as you explain them.
  3. Look through your science experiment books for ideas for hands-on fun.  Sometimes the book you have choosen for a reference has experiments in it.  Sometimes it is fun to use those cute little experiment books for ideas.  Choose experiments to go with  your topics.   Don’t worry about doing every experiment in the book, or every one on a topic.  Just plan for about one a week.  You don’t have to do them on that schedule though and you can add more as your children think them up.  Playing with science is important.
  4. Decide what you want for a product.  Do you want to grade something?  A test?  A paper?  A notebook?  Something aloud?  Or no grade at all?  Please try to keep a notebook.  In the notebook you can have sections for new terms, notes, maps, photos, experiment write-ups, reports, news clippings, speech notes, tests, and activity pages.  This way your child will have something concrete to remember all about his year in science.
Posted on

Teaching Electricity at Home

By Mark Julicher

Compared to language or mathematics, the study of electricity is very young; however, the subject of electricity is vast and still growing.  It may seem a daunting task to teach electricity in your homeschool, but take heart!  With a good starting point and some definite objectives, you can introduce this fascinating world to your students.

Can I teach my children about electricity?

Can I teach it safely and economically?

The answers are, “Of course, you can teach electricity”, and “Yes, you can do it safely and economically.”

So, what should be your objectives and where should you start?  An elementary student should be able to find out the important points about electricity: what it is, what are its properties, what makes it, and why is it dangerous.

Your older student will want to do and learn more about electricity, control, and measurement.  Electrical safety should be a major concern for your home as well.  Studying this topic from a text may yield a lot of facts, but will not impress upon your children the dangers of using electricity.  They will also need to learn about consuming electricity, conserving it and measuring, not to mention paying for it.  When taken all together, you now have a list including safety issues, some theory, and practical consumer objectives; all that is necessary to become an informed user.

A good place to begin your study of electricity is its history. Some of the classic experiments done by Tesla, Volta, Marconi, Franklin, etc. are amazing and also dangerous.  It because of Franklin that we know how to protect against lightning.  It is because of Edison that we know how to make effective storage batteries.  I don’t recommend repeating some of their experiments at home unless you are good friends with the local fire department.  Read about these historical figures and their work, and then move on to your own investigations.

Next, you should look into the question of what electricity is. We can see evidence of it, use it to accomplish work, and even die from it if we mishandle it, but most people do not understand its nature.  The best way to begin to study electrons and their movements is to play around with static electricity.  We all have experience with generating a charge on a dry day and then getting zapped when we touch the doorknob.  We also know that a balloon will attract hair.  If your child understands why static electricity builds up and discharges, he will find understanding the current or flow of electrons much easier.

After checking out the possibilities of static electricity, then it is time to move on to electrons moving in a current.  Direct current and alternating current are each very useful in our daily lives and so your child should understand them; how they are generated, how controlled; and how used at home.  What are the different kinds of batteries we use and how do they produce electricity?  What are the other ways to produce electrical current?  Solar power, wind power and geothermal power, not forgetting hydroelectric power, are all ways in which we generate electricity.

Electricity is a ready servant. We are surrounded by complicated electrical technology that is growing rapidly.  Great advances are made every year making it almost impossible to know all there is about electricity and electronics.  But, our children can become informed users who can control this servant wisely and not be intimidated or overwhelmed.   What, then does an informed user know about electricity?  He/she knows how many ways electricity is used in the home, how much electricity costs, and understands electrical safety.  Finally, your student should know how to take care of the electrical servants around the house.  Is this starting to sound easy?  I hope so.  It is still a BIG topic, but we starting to get our arms around it now!

Let’s look at the four issues; uses, cost, safety, and care more closely.

How many ways do you use electricity around your house? You could walk around with your student while you make a list.  This could take a while and it should generate a zillion questions like: why is there electricity going to a gas furnace, why does the phone work when the power is out, why do the lights dim when the refrigerator comes on, why are there so many fuses or circuit breakers behind the electrical panel.  Why is the dryer plug shaped differently than most of the others, why are there three electrical wires coming to the house when there are only two wires leading to the lamps and TV…the list of questions goes on forever.

Take one question and research it! Write a good paragraph or three stating the question and the answer.  What a good starting point!

When you did your list did you remember the battery in your car?  Did you remember the dry cells in the flashlight?  How about the TV remote control or the garage door opener?  How about the electrical energy beamed to your house in the form of radio broadcasts?  Wow, so many starting points!

How much does your electrical servant cost? Can you explain the electrical bill to your students?  Can you teach them to read the power meter especially the tricky old ones where some of the dials move counterclockwise and clockwise?  Can you predict the amount of your next electrical bill?  Can you show them how the dial spins faster when high wattage lights are on?  Can you turn off everything unimportant in the house and see how slow the meter turns?

Is this an economics lesson?  You bet it is! While you are teaching the cost of having your electric servant, don’t forget the cost of things other than house current such as car batteries, flashlight cells, solar panels, wind generators and more.  Could you run your house on car batteries, why don’t more people have solar powered appliances, why are alkaline batteries cheaper to use than regular batteries?

Oh, my!  That was another string of questions begging to be answered by your student.  It was also another possible set of starting points.

The next issue to explore is safety. You know a great deal about electrical safety.  You may not understand all that you know, but you know a lot.  For example, you know not to use electrical devices while standing in a puddle of water or in a bathtub.  Teach this to your student!  A young man was killed recently when he plugged in a car battery charger while standing on wet grass.  How tragic!  You know that you never put a knife in the toaster to retrieve your burnt bread, but that a clever toast lifter made from two tongue depressors can be safely used.  This brings up the topic of insulators and conductors.  How about a list of conductors and insulators?  How about a list of things that should never go in the microwave oven?  And why?

Oh, did you remember that microwaves (not the ovens) are an electrical energy field?  Good.  It is just another form of your electrical servant to be used correctly.

You can’t stress electrical safety enough. Batteries give off explosive gases when they are charged.  Halogen lamps give off large quantities of ultraviolet light and can damage eyes if not filtered.  Heat lamps can cause sunburn.  Electric motors give off tiny sparks and can set flammable fumes on fire so don’t use the electric weedchomper near the gas can.  Wet skin conducts much better the dry skin.  Don’t pull out a plug by the wires; don’t put too many plugs into an extension cord.  Don’t put a penny in the fuse box.  The TV still has deadly voltage inside it long after it is turned off.  Improperly handling a spark plug wire on a running engine can knock you silly – even on the lawnmower.

Once again, the list of safety items is very large.  Moms and dads may not remember or understand all the safety rules, but what a great list of library research topics.

Let’s move on to the last of the four issues, care of our electrical servant. Actually, this topic is both care and respect.  Used properly, electric appliances last a long time and work safely.  Abused appliances do not last as long and may not be safe.  It is good to discuss examples of abuse and the consequences.

Examples might be that overloaded motors will overheat and eventually burn out.  Overloaded extension cords get hot and can start a fire.  Rotating devices such as blenders, mixers, and garbage disposals can be damaged by feeding them spoons and other objects.  Plugging in or unplugging sensitive devices while they are switched on can damage them. Sparking the cat’s nose on a dry winter day can cause cat bites.  Pulling out electric cords by the wire can break wires or cause short circuits.  Turning the TV on and off a while lot of times quickly will most likely destroy it.  And finally, if the device says,  “no user serviceable parts inside,” it really means,  “don’t mess with it unless you intend to buy a new one.”

Did I answer the question about where to start? You can start nearly anywhere and get the vital concepts across.  Safety leads to care and respect which leads to uses, which leads to costs and so forth.  It really does not matter where you begin to teach the fundamentals of electricity as long as you keep the objective in mind.  You want an informed user of the servant electricity.

Once this foundation is built, the student can go as far as the imagination will allow.

A few parting thoughts.

Many people like a list of concepts, topics and projects that provide a good coverage of a topic.  After giving this some thought, I have compiled a brief list that a senior high student should understand.  This is not to say you should wait until the senior year to teach electricity.  Most students can grasp electrical concepts much earlier and can be working with the basics by age twelve.  By age thirteen, every student should have built and explained one simple electrical device such as a buzzer or electromagnet.  It is better to make a simple device that is understood than to build a superwhizbang gadget which the student cannot explain.  Students who enjoy electronics will naturally build more.  Other students will become wise users of electricity.

Concepts which your students should understand:

  • Static electricity
  • Alternating current
  • Direct current
  • Ohms Law
  • Voltage
  • Ground
  • Resistance
  • Digital signal
  • Analog signal
  • Battery
  • Cell
  • Transformer
  • Electromagnet
  • Circuit
  • Electron

Resources:

Simple Machines Made Simple by Ralph St. Andre.  A great book for experimenters, Simple Machines Made Simple not only has easy to understand directions and down to earth experiments, but there is plenty of follow through.  The students are asked to observe, record, measure, and even make line charts!  The activities are suitable for 3-8th grades and also include directions for making an activity center so the kids can work independently.

Basic Electronics by Gene McWhorter and Alvis J. Evans.  This book is really a textbook.  It is divided into chapters covering the basics of electronics, DC and AC electricity, diodes, transistors, amplifiers, radios, digital circuitry (the foundation of computers) and more. The chapters are organized and should be able to be used easily independently.  There are problems to solve and quizzes.

Getting Started With Electronics by Forrest M. Mims III.  This book is full of easy to use electronics experiments that make sense.  My son started this one at age 8, as it is simple to understand.  The concepts are real, not watered down and progress to college level very quickly even though the apparent difficulty of the book is very low.  Buy it!  Highly Recommended.